Exercices de révision du programme de Terminale

Partie I : Enoncés des Exercices

1 Équations - Inéquations

Exercice 1.1

Résoudre les inéquations suivantes :

1.
$$(2x+1)(x+2) \leq 0$$

$$2. \ \frac{2x+1}{x+2} \leqslant 0$$

$$3. \ \frac{x-2}{x+3} \geqslant \frac{x}{x-1}$$

Exercice 1.2

L'objectif ici, est de savoir faire ces calculs correctement et **rapidement**, c'est pour cela qu'ils sont assez simples. Compléter ou résoudre l'équation ou inéquation :

1.
$$\cos\left(\frac{\pi}{6}\right) =$$

2.
$$\sin(x) > \frac{\sqrt{2}}{2}$$

3. $\tan(x) = \sqrt{3}$

Remarque. Si vous ne la connaissez pas, voir exercice 4.1 pour la définition de la fonction tangente

Exercice 1.3

Résoudre dans \mathbb{R}^2 (utiliser des combinaisons linéaires d'équations) :

$$(S_1)$$
 $\begin{cases} (E_1) & 2x + y = 3\\ (E_2) & x - 3y = 8 \end{cases}$

2 Fonctions d'une variable réelle

Exercice 2.1

Soient x, a, b, c, d des réels strictement positifs. Cochez la réponse correcte :

1. On a
$$\ln(a+b) =$$

 $\square \ln(a) \ln(b) \quad \square \ln(a) + \ln(b) \quad \square \ln(ab) \quad \square \text{ rien de tout cela}$

2. On a ln(ab) =

 $\square \ln(a) \ln(b) \quad \square \ln(a) + \ln(b) \quad \square \ln(a+b) \quad \square \text{ rien de tout cela}$

3. On a $e^{a+b} =$

 $\Box e^a e^b \quad \Box e^a + e^b \quad \Box (e^a)^b \quad \Box$ rien de tout cela

4. On a $\sqrt{a+b} =$

 $\Box \sqrt{a} + \sqrt{b} \quad \Box \sqrt{a}\sqrt{b} \quad \Box$ rien de tout cela

- 5. On a $\sqrt{a}\sqrt{b} =$
- $\Box \sqrt{ab} \quad \Box (\sqrt{a})^{\sqrt{b}} \quad \Box$ rien de tout cela

6. On a $0^0 =$

 $\Box 1 \quad \Box 0 \quad \Box$ rien de tout cela

- 7. On a $(x^a)^b =$
- $\Box x^{a^b} \quad \Box x^{ab} \quad \Box x^a x^b \quad \Box \text{ rien de tout cela}$

Exercice 2.2

Compléter :

- $1. \lim_{x \to +\infty} \frac{\ln(x)}{x} =$
- $2. \lim_{x \to 0^+} \frac{\ln(x)}{x} =$
- $3. \lim_{x \to +\infty} \frac{e^x}{x} =$

Exercice 2.3

Faire l'étude de la fonction $f: x \mapsto \frac{1}{2}x(x^2-3x+4)$ et dessiner son allure sur un graphe.

Exercice 2.4

Faire l'étude et tracer l'allure des fonctions suivantes.

- 1. $f: x \mapsto \sin\left(2x + \frac{\pi}{2}\right)$. On déterminera avec soin le domaine d'étude et on tracera le graphe sur l'intervalle $[-\dot{\pi}, \pi]$.
- $\begin{array}{ccc}
 2. & g: x \mapsto \sqrt{9x^2 6x + 1}. \\
 \hline \text{Exercice} & \textbf{2.5}
 \end{array}$

Dans chaque cas suivant, donner le domaine de définition de la fonction puis calculer sa dérivée en précisant sur quel ensemble la fonction est dérivable :

 $1. \ f: x \mapsto \ln\left(2x+1\right)$

3. $h: x \mapsto \sin(\pi - 2x)$

 $2. \ g: x \mapsto \frac{x^3}{\cos^2(x)}$

4. $k: x \mapsto |\sin(\pi - 2x)|$

Suites numériques - Raisonnement par récurrence 3

(Exercice 3.1)

Soit la suite (v_n) définie par : $v_{n+1} = \frac{v_n}{3} + 1$. avec $v_0 = 1$. C'est une suite **arithmético géométrique**.

- 1. Déterminer la solution réelle a de l'équation, $x = \frac{x}{2} + 1$.
- 2. Posons alors $u_n = v_n a$. Montrer que (u_n) est alors une suite géométrique, préciser sa raison et le premier terme.
- 3. En déduire l'expression de v_n en fonction de n.
- 4. Quelle est la limite de la suite (v_n) ?

Remarque. Dans les exercices suivants (et de manière générale), on utilise la notation « $\sum_{k=1}^{\infty} f(k)$ » qui représente la somme pour l'indice k entier variant de 1 à n des f(k), ainsi on a :

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n \quad \text{et } \sum_{k=2}^{5} \sin(k+n) = \sin(2+n) + \sin(3+n) + \sin(4+n) + \sin(5+n)$$

$egin{pmatrix} \mathsf{Exercice} & 3.2 \end{bmatrix}$

Montrer par récurrence que : $\sum_{k=0}^n k^3 = \frac{(n^2)(n+1)^2}{4}.$

Exercice 3.3

Considérons la suite (u_n) définie par $:u_n = \frac{\displaystyle\sum_{k=1}^n k}{n^2}.$

- 1. Montrer par récurrence que $\sum_{k=1}^{n} k$ est égale à : $\frac{n(n+1)}{2}$.
- 2. En déduire une simplification de u_n .
- 3. Etudier la convergence de cette suite.

Exercice 3.4

Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence : $\forall n\in\mathbb{N}, u_{n+1}=\frac{1}{2}u_n-3$ et $u_0=2$ On définit une nouvelle suite $(v_n)_{n\in\mathbb{N}}$ par : $\forall n\in\mathbb{N}, v_n=u_n+6$

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique. Préciser sa raison et son premier terme.
- 2. En déduire l'expression de u_n en fonction de n et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

4 Trigonométrie

Exercice 4.1

On pose $tan(x) = \frac{\sin(x)}{\cos(x)}$.

- 1. Déterminer le domaine de définition de cette fonction appelée tangente. On le notera D.
- 2. Montrer que pour tout $x \in D$, $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.

Exercice 4.2

Montrer que pour tout $x \in \mathbb{R}$, $\cos(3x) = 4\cos^3(x) - 3\cos(x)$. En déduire une égalité du même type pour $\sin(3x)$.

Exercice 4.3

Toutes les formules de trigonométrie sont à savoir parfaitement, pour vous aider à tester si vous les avez bien apprises, compléter le formulaire suivant :

- $1. \sin(2a) =$
- $2. \cos(a+b) =$
- $3. \tan(2a) =$
- $4. \cos(a)\cos(b) =$
- 5. $\sin^2(a) =$ en fonction de $\cos(2a)$
- 6. $\sin(a) + \sin(b) =$ (transformation en produit)

5 Calcul intégral - Calcul de primitives

Exercice 5.1

Calculer les intégrales suivantes :

icular les integrales
$$\sqrt{\int_0^1 \frac{x^2}{x^3 + 1} dx}$$

$$\sqrt{\int_0^{\pi/4} \frac{\sin(x)}{\cos(x)} dx}$$

$$\sqrt{\int_{0,5}^1 \frac{\ln(t)}{t} dt}$$

$$\sqrt{\int_0^1 e^{3u} du}$$

$$\sqrt{\int_0^2 \frac{2}{3x + 1} dx}$$

Exercice 5.2

Déterminer une primitive des fonctions suivantes :

1.
$$f_3(x) = \frac{1}{1-x}$$

2.
$$f_4(x) = \frac{1}{(3x+1)^2}$$

6 Calcul algébrique

Exercice 6.1)

Simplifier: $\frac{1 + \frac{x+1}{x+3}}{x+4}$

$\begin{bmatrix} \mathsf{Exercice} & 6.2 \end{bmatrix}$

Simplifier $:(a+b+c)^2 + (-a+b+c)^2 + (a-b+c)^2 + (a+b-c)^2$

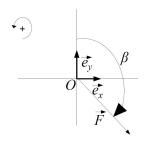
(Exercice 6.3)

Simplifier l'expression : $\frac{\frac{x+y}{1+xy} + z}{1 + z\frac{x+y}{1+xy}}$

7 Géométrie

Exercice 7.1

Donner les composantes de la force \overrightarrow{F} dans le repère orthonormé direct $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$ en fonction de β et de sa norme notée F.



Partie II: INDICATIONS

1 Équations - Inéquations

Exercice 1.1

- 1. Faire un tableau de signe si besoin.
- 2. Le signe d'un quotient est le même que celui d'un produit (en enlevant les annulations du dénominateur).
- 3. Regrouper en mettant au même dénominateur.

Exercice 1.2

- 1. Utiliser le cercle trigonométrique.
- 2. Connaître les valeurs de tan(x) pour les angles « classiques » $(0, \pi/6, \pi/4, \pi/3)$.

Exercice 1.3

 $3(E_1) + (E_2)$ donne x.

2 Fonctions d'une variable réelle

$ig(\mathsf{Exercice} \ \ 2.1 ig)$

Voir l'étude des fonctions usuelles correspondantes.

$egin{pmatrix} \mathsf{Exercice} & 2.2 \end{pmatrix}$

- 1. C'est une limite usuelle
- 2. Ce n'est pas une forme indéterminée.
- 2. C'est une limite usuelle

$egin{bmatrix} \mathsf{Exercice} & 2.3 \end{bmatrix}$

Il est plus facile de développer le produit avant de calculer la dérivée!

3 Suites numériques - Raisonnement par récurrence

Exercice 3.1

3. Commencer par donner u_n en fonction de n.

4 Trigonométrie

Bien apprendre les formules de trigo!!!!!

5 Calcul intégral - Calcul de primitives

Exercice 5.1

Chercher à reconnaître des formes dérivées comme « $\frac{u'}{u}$, $u' \times u^n$, ... » pour pouvoir intégrer directement. Il est important de s'entrainer à « voir » cela.

6 Calcul algébrique

Ces exercices utilisent des reflexes de calcul que vous devez avoir déjà acquis : développer, factoriser, mettre sous le même dénominateur...

7 Géométrie

Exercice 7.1

Savoir faire ce genre d'exercice est indispensable en particulier pour les cours de physique, on vous demande d'être efficace et de savoir répondre rapidement à ce type de questions. Plusieurs techniques peuvent être utilisées, on pourra par exemple considérer le vecteur $\vec{u} = \frac{\vec{F}}{F}$ qui est un vecteur du cercle trigonométrique et faire le lien entre β et l'angle θ « habituel » (entre \vec{e}_x et \vec{u}) tel que \vec{u} ait pour coordonnées ($\cos(\theta), \sin(\theta)$). On a ici $\theta = \beta - \frac{\pi}{2}$.